55 research outputs found

    Descent from the polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and temperature satellite observations by the Odin Sub-Millimeter Radiometer

    Get PDF
    Using newly analyzed mesospheric water vapor and temperature observations from the Sub-Millimeter Radiometer instrument aboard the Odin research satellite over the period 2001-2009, we present evidence for an anomalously strong descent of dry mesospheric air from the lower mesosphere into the upper stratosphere in the winters of 2004, 2006, and 2009. In the three cases, the descent follows the recovery of the upper stratospheric polar vortex from a major midwinter stratospheric sudden warming. It is also accompanied by the rapid formation of an anomalously warm polar mesospheric layer, i.e., an elevated polar stratopause, near 75 km, and its slower descent to prewarming level (near 1 hPa) over 1.5-2 months. These three winters stand out in the current record of Odin/Sub-Millimeter Radiometer observations started in July 2001

    Large-scale dynamics of the mesosphere and lower thermosphere: an analysis using the extended Canadian Middle Atmosphere Model

    Get PDF
    The extended Canadian Middle Atmosphere Model is used to investigate the large-scale dynamics of the mesosphere and lower thermosphere (MLT). It is shown that the 4-day wave is substantially amplified in southern polar winter in the presence of instabilities arising from strong vertical shears in the MLT zonal mean zonal winds brought about by parameterized nonorographic gravity wave drag. A weaker 4-day wave in northern polar winter is attributed to the weaker wind shears that result from weaker parameterized wave drag. The 2-day wave also exhibits a strong dependence on zonal wind shears, in agreement with previous modeling studies. In the equatorial upper mesosphere, the migrating diurnal tide provides most of the resolved westward wave forcing, which varies semiannually in conjunction with the tide itself; resolved forcing by eastward traveling disturbances is dominated by smaller scales. Nonmigrating tides and other planetary-scale waves play only a minor role in the zonal mean zonal momentum budget in the tropics at these heights. Resolved waves are shown to play a significant role in the zonal mean meridional momentum budget in the MLT, impacting significantly on gradient wind balance. Balance fails at low latitudes as a result of a strong Reynolds stress associated with the migrating diurnal tide, an effect which is most pronounced at equinox when the tide is strongest. Resolved and parameterized waves account for most of the imbalance at higher latitudes in summer. This results in the gradient wind underestimating the actual eastward wind reversal by up to 40%

    Validation of the Aura Microwave Limb Sounder Temperature and Geopotential Height Measurements

    Get PDF
    Global satellite observations of temperature and geopotential height (GPH) from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed. The precision, resolution, and accuracy of the data produced by the MLS version 2.2 processing algorithms are quantified, and recommendations for data screening are made. Temperature precision is 1 K or better from 316 hPa to 3.16 hPa, degrading to ∌3 K at 0.001 hPa. The vertical resolution is 3 km at 31.6 hPa, degrading to 6 km at 316 hPa and to ∌13 km at 0.001 hPa. Comparisons with analyses (Goddard Earth Observing System version 5.0.1 (GEOS-5), European Centre for Medium-range Weather Forecasts (ECMWF), Met Office (MetO)) and other observations (CHAllenging Minisatellite Payload (CHAMP), Atmospheric Infrared Sounder/Advanced Microwave Sounder Unit (AIRS/AMSU), Sounding of the Atmosphere using Broadband Radiometry (SABER), Halogen Occultation Experiment (HALOE), Atmospheric Chemistry Experiment (ACE), radiosondes) indicate that MLS temperature has persistent, pressure-dependent biases which are between −2.5 K and +1 K between 316 hPa and 10 hPa. The 100-hPa MLS v2.2 GPH surface has a bias of ∌150 m relative to the GEOS-5 values. These biases are compared to modeled systematic uncertainties. GPH biases relative to correlative measurements generally increase with height owing to an overall cold bias in MLS temperature relative to correlative temperature measurements in the upper stratosphere and mesosphere

    Effects of meridional sea surface temperature changes on stratospheric temperature and circulation

    Get PDF
    Using a state-of-the-art chemistry-climate model, we analyzed the atmospheric responses to increases in sea surface temperature (SST). The results showed that increases in SST and the SST meridional gradient could intensify the subtropical westerly jets and significantly weaken the northern polar vortex. In the model runs, global uniform SST increases produced a more significant impact on the southern stratosphere than the northern stratosphere, while SST gradient increases produced a more significant impact on the northern stratosphere. The asymmetric responses of the northern and southern polar stratosphere to SST meridional gradient changes were found to be mainly due to different wave properties and transmissions in the northern and southern atmosphere. Although SST increases may give rise to stronger waves, the results showed that the effect of SST increases on the vertical propagation of tropospheric waves into the stratosphere will vary with height and latitude and be sensitive to SST meridional gradient changes. Both uniform and non-uniform SST increases accelerated the large-scale Brewer-Dobson circulation (BDC), but the gradient increases of SST between 60°S and 60°N resulted in younger mean age-of-air in the stratosphere and a larger increase in tropical upwelling, with a much higher tropopause than from a global uniform 1.0 K SST increase. © 2014 Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg

    Global Dynamics of the MLT

    Full text link

    Meridionally tilted ice cloud structures in the tropical upper troposphere as seen by CloudSat

    No full text
    It remains challenging to quantify global cloud properties and uncertainties associated with their impacts on climate change because of our poor understanding of cloud three-dimensional (3-D) structures from observations and unrealistic characterization of 3-D cloud effects in global climate models (GCMs). In this study we find cloud 3-D effects can cause significant error in cloud ice and radiation measurements if it is not taken into account appropriately. <br><br> One of the cloud 3-D complexities, the slantwise tilt structure, has not received much attention in research and even less has been reported considering a global perspective. A novel approach is presented here to analyze the ice cloud water content (IWC) profiles retrieved from CloudSat and a joint radar–lidar product (DARDAR). By integrating IWC profiles along different tilt angles, we find that upper-troposphere (UT) ice cloud mass between 11 and 17 km is tilted poleward from active convection centers in the tropics [30° S, 30° N]. This systematic tilt in cloud mass structure is expected from the mass conservation principle of the Hadley circulation with the divergent flow of each individual convection/convective system from down below, and its existence is further confirmed from cloud-resolving-scale Weather Research and Forecasting (WRF) model simulations. Thus, additive effects of tilted cloud structures can introduce 5–20% variability by its nature or produce errors to satellite cloud/hydrometeor ice retrievals if simply converting it from slant to nadir column. A surprising finding is the equatorward tilt in middle tropospheric (5–11 km) ice clouds, which is also evident in high-resolution model simulations but not in coarse-resolution simulations with cumulus parameterization. The observed cloud tilt structures are intrinsic properties of tropical clouds, producing synoptic distributions around the Intertropical Convergence Zone (ITCZ). These findings imply that current interpretations based on over-simplified cloud vertical structures could lead to considerable cloud measurement errors and have a subsequent impact on understanding cloud radiative, dynamical and hydrological properties
    • 

    corecore